موقع عيون البصائر التعليمي

الجمهورية الجزائرية الديمقراطية الشعبية

2021/2020

وزارة التربية الوطنية موضوع رقم 05 تحضيرا للبكالوريا الشعبة: 3 ع ت - 3 ت ر

🔼 الأستاذ: سيدي عيسى

المادة: رياضيات

<u>التمرين الأول:</u>

$$f(x) = \sqrt{\frac{x}{e}}$$
 بـ $[0,+\infty[$ على f

- (لمنصف الأول). (Δ) ادرس تغيرات الدالة f ثم عين نقط تقاطع (C_f) مع (Δ) ادرس تغيرات الدالة Δ
- لتكن المتتالية (U_n) المعرفة على * N حدها الأول $U_1=e^2$ و كل حدودها موجبة تماما (2 و من اجل كل $e(U_n)^2=U_{n-1}:\ n\succ 1$

$$U_n \succ \frac{1}{e} : n \in N^*$$
 لے برھن انه من اجل کل

 $\lim U_n$ ب ـ ادرس اتجاه تغیر $\left(U_n
ight)$. $\left(U_n
ight)$

.
$$V_n = \frac{1 + \ln\left(U_n\right)}{2}$$
 ب $n \in N^*$ بالمعرفة على $\left(V_n\right)$ المعرفة على (3

أ ـ برهن أن $ig(V_nig)$ متتالية هندسية يطلب تعيين أساسها و حدها الاول .

.
$$(U_n)$$
 بدلالة n ثم ادرس تقارب V_n بدلالة n ثم ادرس تقارب V_n

$$P = U_1 \times U_2 \times \dots \times U_n$$
 و $S = V_1 + V_2 + \dots + V_n$: احسب (4

التمرين الثاني:

. (P و ظهر F و فطعة نقدية غير مزيفة F مرات متتالية. (القطعة فيها وجه

1) أ ـ احسب احتمال الحصول على ثلاث أوجه .

ب _ احسب احتمال الحصول على وجه في الرمية الثالثة .

- 2) نسمى X المتغير العشوائي الذي يرفق بكل عملية عدد الأوجه المحصل عليه.
- . E(X) عط قانون احتمال المتغير العشوائي X ثم احسب أمله الرياضياتي
 - . $\sigma(X)$ الانحراف المعياري الانحراف

التمرين الثالث:

$$f(x) = 1 - \frac{1}{2}x - \frac{2}{e^x + 1}$$
: يعتبر الدالة f المعرفة على \mathbb{R} بما يلي \mathbb{R} بما يلي f المعرفة على f المعرفة على f أ ـ تحقق أنه من أجل كل f من f من f من f أ ـ تحقق أنه من أجل كل f من f من f من f أ ـ تحقق أنه من أجل كل f من f بما يلي f بما يلي بما يلي f بما يلي f بما يلي f بما يلي f بما يلي بما يلي

صفحة 1 من 2

elbassair.net

. f فردية ثم أحسب نهايات الدالة f فردية ثم أحسب نهايات الدالة

.
$$\mathbb{R}^+$$
 على $f'(x) = -\frac{1}{2} \left(\frac{e^x - 1}{e^x + 1} \right)^2$: أ ـ بين أن: $f'(x) = -\frac{1}{2} \left(\frac{e^x - 1}{e^x + 1} \right)^2$

$$1 - \frac{1}{e^x + 1} \le \frac{1}{2}x$$
: \mathbb{R} من x کل کل جا استنتج أنه من أجل کل

. بین أن
$$\lim_{x\to +\infty} \left[f(x) - \left(1 - \frac{1}{2}x\right) \right] = 0$$
 بین أن $\lim_{x\to +\infty} \left[f(x) - \left(1 - \frac{1}{2}x\right) \right] = 0$

. (C_f) المنحنى ((C_f)

$$u_{n+1}=1-rac{2}{e^{u_n}+1}$$
 ، $u_0=1$: كما يلي N كما يلي المعرفة على (4

$$u_n > 0$$
 : \mathbb{N} من n خل کل من أجل أـ

. متاقصة
$$(u_n)$$
 متالية أن المتتالية $u_{n+1} \leq \frac{1}{2}u_n$: أن $(z-2)$ متاقصة باستعمال السؤال

.
$$(u_n)$$
ج – بين أن: $u_n \leq \left(\frac{1}{2}\right)^n$ عيث $n \in \mathbb{N}$ عيث $u_n \leq \left(\frac{1}{2}\right)^n$ عين أن:

التمرين الرابع:

 $f(x) = e^{-x}(ax+b)$ بـ: R بـ المعرفة على R بـ المعرفة على التالي هو التمثيل البياني لدالة المعرفة على المعرفة على التالي هو التمثيل البياني البياني المعرفة على المعرفة على التالي التا

حيث a و a عددان حقيقيان . المنحني a يقبل عند النقطة التي فاصلتها $\left(-\frac{1}{2}\right)$ مماسا يوازي محور الفواصل ويقبل عند

 $B\left(3;0\right)$ النقطة $A\left(0;3\right)$ مماسا (Δ) مماسا

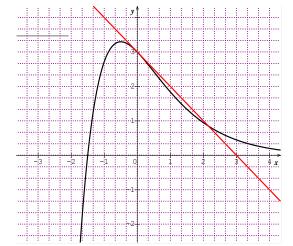
$$\cdot f'\left(-rac{1}{2}
ight)$$
 و $f\left(0
ight)$, $f\left(-rac{3}{2}
ight)$ و يانية عين (1

 (Δ) عين معادلة للمستقيم (Δ) ثم عين معادلة المستقيم

$$f\left(x\right)=e^{-x}\left(2x+3\right):R$$
 ج ـ أثبت أنه من أجل كل x من

$$h(x) = 1 - e^{-x} (2x + 1)$$
 نتكن الدالة h المعرفة على R بـ: (2

أ ـ أدرس تغيرات الدالة h


.
$$h(x)$$
 بالمعادلة $h(x)=0$ تقبل حلان أحدهما معدوم والأخر α حيث: $1<\alpha<2$ ثم استنتج إشارة

$$g(x) = e^{-x}(2x+3) + x - 3$$
 بنا الدالة g المعرفة على R بنا الدالة g المعرفة على (3

$$(g(\alpha)=-0.6)$$
 . g أ ـ أثبت أنه من أجل كل x من $g'(x)=h(x):R$ ثم شكل جدول تغيرات الدالة

$$2 < \beta < 3$$
: نقبل حلا وحيدا β ينتمي إلى المجال $\alpha; +\infty[$ ثم تحقق أ $g(x) = 0$ ثقبل حلا وحيدا

$$(\Delta)$$
 ج ـ استنتج إشارة $(B(x))$ ثم حدد وضعية $(B(x))$ بالنسبة إلى

